Most of background subtraction methods represent background statistics using probabilistic unified frame-works such as the Gaussian mixture model or kernel density estimation. But these models cannot define the exact difference between two pixels. It causes misclassi-fication such as false alarms and misses. We presented a new sensor noise model appropriate for general CCD cameras. Based on this, we propose a novel background subtraction method. Our noise modeling needs a line estimation step to relate image intensities with parame-ters of the noise distribution. This paper describes a new line estimation algorithm given two consecutive static images, and from which can have a well-fitted distribu-tion for each pixel according to intensity of the pixel. In addition, we present a background update method to deal with the continuous variation of the background. We can estimate accurate foregrounds by adapting the esti-mated per-pixel distributions and background updates.
Publications
International Conference
Statistical Background Subtraction Based on the Exact Per-pixel Distributions
조회 수 2470
댓글 0
저 자 | Youngbae Hwang, Hanbyul Joo, Jun-sik Kim, In So Kweon |
---|---|
학 회 | IAPR workshop on Machine Vision Applications (MVA) |
논문일시(Year) | 2007 |
논문일시(Month) | 05 |