Robotics and Computer Vision Laboratory Login  
  Robotics and Computer Vision Laboratory kaist logo
Archive Courses

Publications
Home  >  Research  >  Publications

 
[International Conference] Real-time Head Orientation from a Monocular Camera using Deep Neural Network
The 12th Asian Conference on Computer Vision (ACCV) , November 2014
Download
  accv2014finalpaper_v3.pdf accv2014finalpaper_v3.pdf (1.4M) [133]
Abstract
We propose an efficient and accurate head orientation estimation algorithm using a monocular camera. Our approach is leveraged by deep neural network and we exploit the architecture in a data regression manner to learn the mapping function between visual appearance and three dimensional head orientation angles. Therefore, in contrast to classification based approaches, our system outputs continuous head orientation. The algorithm uses convolutional filters trained with a large number of augmented head appearances, thus it is user independent and covers large pose variations. Our key observation is that an input image having 32 X 32 resolution is enough to achieve about 3 degrees of mean square error, which can be used for efficient head orientation applications. Therefore, our architecture takes only 1$ms$ on roughly localized head positions with the aid of GPU. We also propose  particle filter based post-processing to enhance stability of the estimation further in video sequences. We compare the performance with the state-of-the-art algorithm which utilizes depth sensor and we validate our head orientation estimator on Internet photos and video.
Notes
This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIP) (No. 2010-0028680).

 
   
 

Robotics and Computer Vision Laboratory
KAIST | Electrical Engineering | Contact Us | Sitemap